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57 ABSTRACT

Neural networks for object detection in images are used with
a spatial pyramid pooling (SPP) layer. Using the SPP
network structure, a fixed-length representation is generated
regardless of image size and scale. The feature maps are
computed from the entire image once, and the features are
pooled in arbitrary regions (sub-images) to generate fixed-
length representations for training the detectors. Thus,
repeated computation of the convolutional features is
avoided while accuracy is enhanced.

20 Claims, 5 Drawing Sheets
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GENERIC OBJECT DETECTION IN IMAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This Application claims priority to PCT Application Ser.
No. PCT/CN2014/088165 filed on Oct. 9, 2014. The PCT
application is hereby incorporated by reference in its
entirety.

BACKGROUND

As search engine capabilities increase, so does demand
for faster and more capable searches by users. Typical search
engines are capable of performing text-based searches,
which leaves a vast area of images outside the scope of
searches unless the images include well defined and detailed
textual metadata. Object detection technologies in images
are typically complex undertakings involving large amounts
of computing resources and lacking accuracy in many cases.
For example, existing deep convolutional neural networks
(CNNs) involve a fixed-size (e.g., 224x224) input image.
This requirement is “artificial” and may reduce the recog-
nition accuracy for the images or sub-images of an arbitrary
size/scale.

SUMMARY

This summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This summary is not
intended to exclusively identify key features or essential
features of the claimed subject matter, nor is it intended as
an aid in determining the scope of the claimed subject
matter.

Embodiments are directed to methods, devices, and sys-
tems to detect objects in images. An example method may
include receiving an input image, generating feature maps
by one or more filters on a convolutional layer of a neural
network processing the input image, and spatially pooling
responses of each filter at a spatial pyramid pooling (SPP)
layer. Example methods may further include providing
outputs of the SPP layer to a fully-connected layer as fixed
dimensional vectors and training a classifier to detect one or
more objects in the input image based on the fixed dimen-
sional vectors received at the fully-connected layer.

These and other features and advantages will be apparent
from a reading of the following detailed description and a
review of the associated drawings. It is to be understood that
both the foregoing general description and the following
detailed description are explanatory and do not restrict
aspects as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 includes detection of various objects in an example
image;

FIG. 2 illustrates pooling features from arbitrary windows
on feature maps, where the feature maps may be computed
from the entire image and the pooling may be performed in
candidate windows;

FIG. 3 illustrates an example process to perform generic
object detection in an image according to some embodi-
ments;

FIG. 4 is a block diagram of an example general purpose
computing device, which may be used to perform generic
object detection in an image; and
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2

FIG. 5 illustrates a logic flow diagram of a method to
perform generic object detection in an image, according to
embodiments.

DETAILED DESCRIPTION

As briefly described above, neural networks for object
detection in images may be equipped with a more principled
pooling strategy, spatial pyramid pooling (SPP). Using the
SPP network structure, or SPP-net, a fixed-length represen-
tation may be generated regardless of image size and scale.
The feature maps may be computed from the entire image
once, and the features may be pooled in arbitrary regions
(sub-images) to generate fixed-length representations for
training the detectors. Thus, repeated computation of the
convolutional features may be avoided and accuracy
enhanced.

In the following detailed description, references are made
to the accompanying drawings that form a part hereof, and
in which are shown by way of illustrations specific embodi-
ments or examples. These aspects may be combined, other
aspects may be utilized, and structural changes may be made
without departing from the spirit or scope of the present
disclosure. The following detailed description is therefore
not to be taken in a limiting sense, and the scope of the
present invention is defined by the appended claims and
their equivalents.

While some embodiments will be described in the general
context of program modules that execute in conjunction with
an application program that runs on an operating system on
a personal computer, those skilled in the art will recognize
that aspects may also be implemented in combination with
other program modules.

Generally, program modules include routines, programs,
components, data structures, and other types of structures
that perform particular tasks or implement particular abstract
data types. Moreover, those skilled in the art will appreciate
that embodiments may be practiced with other computer
system configurations, including hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, minicomputers, mainframe comput-
ers, and comparable computing devices. Embodiments may
also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted computing environment, program modules may be
located in both local and remote memory storage devices.

Some embodiments may be implemented as a computer-
implemented process (method), a computing system, or as
an article of manufacture, such as a computer program
product or computer readable media. The computer program
product may be a computer storage medium readable by a
computer system and encoding a computer program that
comprises instructions for causing a computer or computing
system to perform example process(es). The computer-
readable storage medium is a computer-readable memory
device. The computer-readable storage medium can for
example be implemented via one or more of a volatile
computer memory, a non-volatile memory, a hard drive, a
flash drive, a floppy disk, or a compact disk, and comparable
hardware media.

Throughout this specification, the term “platform” may be
a combination of software and hardware components for
image processing. Examples of platforms include, but are
not limited to, a hosted service executed over a plurality of
servers, an application executed on a single computing
device, and comparable systems. The term “server” gener-
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ally refers to a computing device executing one or more
software programs typically in a networked environment.
However, a server may also be implemented as a virtual
server (software programs) executed on one or more com-
puting devices viewed as a server on the network. More
detail on these technologies and example operations is
provided below.

FIG. 1 includes detection of various objects in an example
image.

The use of deep convolutional neural networks (CNNs)
and the availability of large scale training data is resulting in
revolutionary changes in the vision technologies, specifi-
cally, in image analysis and object detection. Deep-networks
based approaches are used in image classification, object
detection, and other recognition or non-recognition tasks.

Image 100 in FIG. 1, shows an example of how different
types of objects such as body 102, heads 104, 108, and 114,
box 106, monitor 110, and microscope 112. Each of these
objects may have varying shapes, sizes, and colors. Thus, a
simplistic approach may not be sufficient to detect a variety
of objects in an image. While CNNs and similar approaches
have improved on the state of the art of image analysis,
training and testing of the CNNis still presents challenges.
For example, prevalent CNNs require a fixed input image
size (e.g., 224x224), which may limit both the aspect ratio
and the scale of the input image. When applied to images of
arbitrary sizes, such approaches may fit the input image to
the fixed size, either via cropping or via warping. But, the
cropped region may not contain the entire object, while the
warped content may result in unwanted geometric distortion.

Recognition accuracy may be compromised due to the
content loss or distortion. In addition, a pre-defined scale
may not be suitable when object scales vary. Maintaining a
fixed input size may overlook the challenges involving
scales. A CNN mainly consists of two parts: convolutional
layers, and fully-connected layers that follow. The convo-
Iutional layers operate in a sliding-window manner and
output feature maps, which represent the spatial arrange-
ment of the activations. Indeed, convolutional layers may
not require a fixed image size and may generate feature maps
of any sizes. On the other hand, the fully-connected layers
may need to have fixed-size / length input by their definition.
Hence, the fixed-size constraint may come from the fully-
connected layers, which exist at a deeper stage of the
network.

The example image in FIG. 1 has been described with
specific objects of particular size, type, and shape. Embodi-
ments are not limited to the detection of objects of particular
sizes, shapes, or types, as well as images of particular size,
type, or content. A system for object detection in an image
according to embodiments may be implemented in configu-
rations that can work with any size, type, or content of image
and detect objects of any size, shape, or type using the
principles described herein.

FIG. 2 illustrates pooling features from arbitrary windows
on feature maps, where the feature maps may be computed
from the entire image and the pooling may be performed in
candidate windows.

A system according to embodiments employs deep con-
volutional neural networks (CNNs) with spatial pyramid
pooling (SPP) as shown in diagram 200. Considering an
example seven-layer architecture, the first five layers 204 are
convolutional, some of which may be followed by pooling
layers 210. These pooling layers 210 may also be considered
as “convolutional”, in the sense that they may use sliding
windows 206. The last two layers 214 may be fully con-
nected, with an N-way classifier (e.g., softmax) as the
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output, where N is the number of categories. The deep
network described above needs a fixed image size as dis-
cussed above due to the fully-connected layers that demand
fixed-length vectors 212 as inputs. On the other hand, the
convolutional layers 204 may accept inputs 202 of arbitrary
sizes. The convolutional layers 204 may use sliding filters,
and their outputs may have roughly the same aspect ratio as
the inputs. These outputs are known as feature maps 208,
which involve not only the strength of the responses, but
also their spatial positions.

For example, some feature maps 208 may be generated by
some filters of the conv5 layer (the fifth convolutional layer).
A filter may be activated by some semantic content. For
example, a filter may be activated by a circle shape; another
filter may be activated by a A-shape; and a further filter may
be activated by a v-shape. These shapes in the input images
may activate the feature maps at the corresponding posi-
tions. While the convolutional layers accept arbitrary input
sizes, they may produce outputs of variable sizes. The
classifiers (e.g., SVM or softmax) or fully-connected layers
214 may require fixed-length vectors 212. Such vectors may
be generated by SPP, which can maintain spatial information
by pooling in local spatial bins. The spatial bins may have
sizes proportional to the image size, so the number of bins
is fixed regardless of the image size. This is in contrast to the
sliding window pooling of the conventional deep networks,
where the number of sliding windows depends on the input
size.

Thus, in a system according to embodiments, the last
pooling layer (e.g., pool5, after the last convolutional layer)
may be replaced with a SPP layer 210. In each spatial bin,
the responses of each filter may be pooled. The outputs of
the SPP may be kM-dimensional vectors with the number of
bins denoted as M (k is the number of filters in the last
convolutional layer). The fixed-dimensional vectors may be
used as the input to the fully-connected layer.

With spatial pyramid pooling, the input image may be of
any size. Thus, not only may arbitrary aspect ratios be
allowed, but arbitrary scales may also be used. The input
image may be sized to any scale and the same deep network
applied. When the input image is at different scales, the
network (with the same filter sizes) may extract features at
different scales resulting in higher accuracy.

FIG. 3 illustrates an example process to perform generic
object detection in an image according to some embodi-
ments.

As mentioned previously, deep neural networks may be
used for object detection. For example, R-CNN approach
first extracts about 2,000 candidate windows from each
image via selective search. Then, the image region in each
window is warped to a fixed size (227x227) and a pre-
trained deep neural network is used to extract the feature of
each window. A binary SVM classifier is then trained on
these features for detection. R-CNN may generate results of
compelling quality and substantially outperforms prior
approaches. However, because R-CNN repeatedly applies
the deep convolutional network to about 2,000 windows per
image, it may be time consuming computationally expen-
sive. Feature extraction may be the major timing bottleneck
in this approach.

As shown in diagram 300, an object detection system 302
according to embodiments employs SPP-net for object
detection. The feature maps may be extracted from the entire
image once (optionally at multiple scales). Then, the spatial
pyramid pooling may be applied on each candidate window
of the feature maps to pool a fixed-length representation of
this window. Because the potentially time-consuming con-



US 9,424,493 B2

5

volutional network is applied once, the system may detect
objects on orders of magnitude faster compared to
approaches such as R-CNN.

In some embodiments, window-wise features may be
extracted (310) from regions of the feature maps 308 (com-
pared to direct extraction from image regions by R-CNN).
Thus, feature extraction is enabled in arbitrary windows
from the deep convolutional feature maps 308. Next, a “fast”
mode of selective search may be used to generate a pre-
defined number (e.g., 2,000) of candidate windows per
image. The image may be resized (306) such that min (w;
h)=s, where w is the width, h is the height, and s represents
a predefined scale (e.g., 256) and the feature maps of conv5
may be extracted from the entire image. In some example
implementations, a 4-level spatial pyramid (1x1, 2x2, 3x3,
and 6x6, total of 50 bins) may be used for each candidate
window to pool the features (312). This may generate a
12,800-d (256x50) representation for each window. The
representations may be provided to the fully-connected
layers of the network. Then, a classifier (e.g., a binary linear
SVM classifier) may be trained (314) for each category on
these features.

For the classifier training the ground-truth windows may
be used to generate the positive samples. The negative
samples may be those overlapping a positive window by at
most 30% (measured by the intersection-over-union ratio),
for example. Any negative sample may be removed if it
overlaps with another negative sample by more than 70% or
another predefined threshold. In some examples, hard nega-
tive mining may be employed to train the classifier. In
testing, the classifier may be used to score the candidate
windows. Then, a non-maximum suppression with a pre-
defined threshold (e.g., 30%) may be used on the scored
windows.

In other embodiments, multi-scale feature extraction may
also be used. The image may be resized such that min (w;
h)=s&{480; 576; 688; 864; 1200}, and the feature maps of
conv5 may be computed for each scale. In some examples,
the features from these scales may be combined by pooling
them channel-by-channel. In other examples, a single scale
s may be selected for each candidate window such that the
scaled candidate window has a number of pixels closest to
a predefined value (e.g., 224x224). Then, the feature maps
extracted from this scale may be used to compute the feature
of this window.

If the pre-defined scales are dense enough and the window
is approximately square, the above-described approach may
be roughly equivalent to resizing the window to 224x224
and then extracting features from it. Nevertheless, the fea-
ture maps are computed once (at each scale) from the entire
image, regardless of the number of candidate windows.

In further embodiments, the pre-trained network may be
fine-tuned. Because the features are pooled from the conv5
feature maps from windows of any sizes, the fully-connected
layers may be fine-tuned in some examples. The data layer
may accept the fixed-length pooled features after convS5
followed by the fc6;7 layers and a 21-way (one extra
negative category) fc8 layer. The fc8 weights may be
initialized with a Gaussian distribution (e.g., x=0.01). In
some examples, the learning rates may be fixed to le-4 and
then adjusted to le-5 for all three layers. During fine-tuning,
the positive samples may be those overlapping with a
ground-truth window by [0:5; 1], and the negative samples
by [0:1; 0:5), for example.

In each mini-batch, 25% of the samples may be positive.
In an example implementation, 250,000 mini-batches may
be trained using the learning rate le-4, and then 50,000
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mini-batches using le-5. Because only the fully-connected
layers are fine-tuned, the training may be very fast. Further-
more, bounding box regression may be used to post-process
(316) the prediction windows. The features used for regres-
sion may be the pooled features from conv5. The windows
used for the regression training may be those overlapping
with a ground-truth window by at least 50%, for example.

In yet other embodiments, a model combination approach
may be used for object detection. Another network may be
pre-trained using the same structure but different random
initializations. Then, the above-described detection may be
performed. Given the two models, either model may be first
used to score the candidate windows on a test image. Then,
non-maximum suppression may be performed on the union
of the two sets of candidate windows (with their scores). A
more confident window given by one model may suppress
those less confident given by the other model. The comple-
mentarity may be mainly because of the convolutional
layers. Combination of two randomly initialized fine-tuned
results of the same convolutional model may not provide a
similar gain.

The examples in FIGS. 1 through 3 have been described
using specific examples, configurations, and processes to
perform object detection in an image. Embodiments to
perform object detection are not limited to the specific
examples, configurations, and processes according to these
example descriptions.

A system employing SPP-net to detect objects in images
may advantageously improve usability of object detection in
searches, vision systems, and other image analysis imple-
mentations, as well as reduce computational expense such as
processor load, memory load, and enhance reliability of
object detection, for example, in satellite imaging, security
monitoring, and comparable systems.

FIG. 4 is a block diagram of an example general purpose
computing device, which may be used to perform generic
object detection in an image.

For example, computing device 400 may be used as a
server, desktop computer, portable computer, smart phone,
special purpose computer, or similar device. In an example
basic configuration 402, the computing device 400 may
include one or more processors 404 and a system memory
406. A memory bus 408 may be used for communicating
between the processor 404 and the system memory 406. The
basic configuration 402 is illustrated in FIG. 4 by those
components within the inner dashed line.

Depending on the desired configuration, the processor
404 may be of any type, including but not limited to a
microprocessor (g), a microcontroller (uC), a digital signal
processor (DSP), or any combination thereof The processor
404 may include one more levels of caching, such as a level
cache memory 412, one or more processor cores 414, and
registers 416. The example processor cores 414 may (each)
include an arithmetic logic unit (ALU), a floating point unit
(FPU), a digital signal processing core (DSP Core), or any
combination thereof An example memory controller 418
may also be used with the processor 404, or in some
implementations the memory controller 418 may be an
internal part of the processor 404.

Depending on the desired configuration, the system
memory 406 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof The
system memory 406 may include an operating system 420,
an application 422, and program data 424. The application
422 may include an image processing module 426, which
may be an integral part of the application or a separate
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application on its own. The image processing module 426
may perform image resizing, feature extraction (using deep
convolutional feature maps), spatial pyramid pooling, and
classifier training. Optionally, fine-tuning of the fully-con-
nected layers and post-processing of the prediction windows
may also be performed. The program data 424 may include,
among other data, image data 428 related to the enablement
of generic object detection in an image, as described herein.

The computing device 400 may have additional features
or functionality, and additional interfaces to facilitate com-
munications between the basic configuration 402 and any
desired devices and interfaces. For example, a bus/interface
controller 430 may be used to facilitate communications
between the basic configuration 402 and one or more data
storage devices 432 via a storage interface bus 434. The data
storage devices 432 may be one or more removable storage
devices 436, one or more non-removable storage devices
438, or a combination thereof Examples of the removable
storage and the non-removable storage devices include
magnetic disk devices such as flexible disk drives and
hard-disk drives (HDDs), optical disk drives such as com-
pact disk (CD) drives or digital versatile disk (DVD) drives,
solid state drives (SSD), and tape drives to name a few.
Example computer storage media may include volatile and
nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of infor-
mation, such as computer readable instructions, data struc-
tures, program modules, or other data.

The system memory 406, the removable storage devices
436 and the non-removable storage devices 438 are
examples of computer storage media. Computer storage
media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVDs), solid state drives, or
other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired
information and which may be accessed by the computing
device 400. Any such computer storage media may be part
of the computing device 400.

The computing device 400 may also include an interface
bus 440 for facilitating communication from various inter-
face devices (for example, one or more output devices 442,
one or more peripheral interfaces 444, and one or more
communication devices 446) to the basic configuration 402
via the bus/interface controller 430. Some of the example
output devices 442 include a graphics processing unit 448
and an audio processing unit 450, which may be configured
to communicate to various external devices such as a display
or speakers via one or more A/V ports 452. One or more
example peripheral interfaces 444 may include a serial
interface controller 454 or a parallel interface controller 456,
which may be configured to communicate with external
devices such as input devices (for example, keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (for example, printer, scanner, etc.)
via one or more 1/O ports 458. An example communication
device 446 includes a network controller 460, which may be
arranged to facilitate communications with one or more
other computing devices 462 over a network communication
link via one or more communication ports 464. The one or
more other computing devices 462 may include servers,
client devices, and comparable devices.

The network communication link may be one example of
a communication media. Communication media may typi-
cally be embodied by computer readable instructions, data
structures, program modules, or other data in a modulated
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data signal, such as a carrier wave or other transport mecha-
nism, and may include any information delivery media. A
“modulated data signal” may be a signal that has one or
more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example,
and not limitation, communication media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, radio frequency (RF),
microwave, infrared (IR) and other wireless media. The term
computer readable media as used herein may include both
storage media and communication media.

The computing device 400 may be implemented as a part
of a general purpose or specialized server, mainframe, or
similar computer that includes any of the above functions.
The computing device 400 may also be implemented as a
personal computer including both laptop computer and
non-laptop computer configurations.

Example embodiments may also include methods to
generic object detection in an image. These methods can be
implemented in any number of ways, including the struc-
tures described herein. One such way may be by machine
operations, of devices of the type described in the present
disclosure. Another optional way may be for one or more of
the individual operations of the methods to be performed in
conjunction with one or more human operators performing
some of the operations while other operations may be
performed by machines. These human operators need not be
collocated with each other, but each can be only with a
machine that performs a portion of the program. In other
embodiments, the human interaction can be automated such
as by pre-selected criteria that may be machine automated.

FIG. 5 illustrates a logic flow diagram for process 500 of
a method to perform generic object detection in an image,
according to embodiments. Process 500 may be imple-
mented on a server or other system.

Process 500 begins with operation 510, where an image
processing application may receive an input image to pro-
cess. The image may include a number of objects of a variety
of sizes, shapes, types, and colors. The image processing
application may be a vision application, an analysis appli-
cation, a monitoring application, a search engine, or any
comparable application that is configured to detect objects in
images as part of its operation.

At operation 520, feature maps may be generated by one
or more filters on a convolutional layer of a neural network
processing the input image. The filters may be sliding filters.
The feature maps may be generated once from the entire
input image at one or more scales.

At operation 530, the image processing application spa-
tially pool responses of each filter at a spatial pyramid
pooling (SPP) layer. The SPP layer may pool the responses
of each filter in a plurality of spatial bins and generate a
multi-dimensional output vector, where a number of dimen-
sions of the output vector is based on a number of the
plurality of spatial bins multiplied by a number of filters in
a last convolutional layer.

At operation 540, outputs of the SPP layer may be
provided to a fully-connected layer as fixed dimensional
vectors, which may be followed by operation 550, where a
classifier may be trained to detect one or more objects in the
input image based on the fixed dimensional vectors received
at the fully-connected layer.

The operations included in process 500 are for illustration
purposes. Performance of generic object detection in an
image may be implemented by similar processes with fewer
or additional steps, as well as in different order of operations
using the principles described herein.
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According to some example embodiments, means to
detect objects in images are described. Example means to
detect objects in images may include means for receiving an
input image, means for generating feature maps by one or
more filters on a convolutional layer of a neural network
processing the input image, and means for spatially pooling
responses of each filter at a spatial pyramid pooling (SPP)
layer. Example means to detect objects in images may
further include means for providing outputs of the SPP layer
to a fully-connected layer as fixed dimensional vectors and
means for training a classifier to detect one or more objects
in the input image based on the fixed dimensional vectors
received at the fully-connected layer.

According to some example embodiments, methods to
detect objects in images are described. An example method
may include receiving an input image, generating feature
maps by one or more filters on a convolutional layer of a
neural network processing the input image, and spatially
pooling responses of each filter at a spatial pyramid pooling
(SPP) layer. Example methods may further include provid-
ing outputs of the SPP layer to a fully-connected layer as
fixed dimensional vectors and training a classifier to detect
one or more objects in the input image based on the fixed
dimensional vectors received at the fully-connected layer.

According to other examples, generating the feature maps
may include employing sliding filters at one or more con-
volutional layers configured to accept inputs of arbitrary
sizes and provide outputs that approximate an aspect ratio of
the inputs. Spatially pooling the responses of each filter may
include pooling the responses of each filter in a plurality of
spatial bins and generating a multi-dimensional output vec-
tor, where a number of dimensions of the output vector is
based on a number of the plurality of spatial bins multiplied
by a number of filters in a last convolutional layer.

According to further examples, the method may also
include applying the SPP on each candidate window of the
feature maps to pool a fixed-length representation of each
candidate window and/or resizing the image following fea-
ture extraction. The outputs of the SPP layer may be
representations of each window such that the classifier is
trained for each category of the representations. Training the
classifier may include employing ground-truth windows to
generate positive samples and identifying negative samples
based on an overlap with a positive window below a first
predefined threshold. The method may further include
removing a negative sample that overlaps with another
negative sample above a second predefined threshold and/or
scoring candidate windows through the classifier in a test
mode. The method may also include employing non-maxi-
mum suppression with a predefined threshold on the scored
candidate windows.

According to yet other examples, a computing device to
perform object detection in an image is described. The
computing device may include an input module configured
to receive an input image through one or more of a wired or
wireless communication, a memory configured to store
instructions, and a processor coupled to the memory and the
input module, the processor executing an image processing
application. The image processing application may be con-
figured to generate feature maps by employing one or more
sliding filters on a convolutional layer of a neural network
processing the input image; spatially pool responses of each
filter in a plurality of spatial bins at a spatial pyramid pooling
(SPP) layer; provide outputs of the SPP layer to a fully-
connected layer as fixed dimensional vectors; and train a
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classifier to detect one or more objects in the input image
based on the fixed dimensional vectors received at the
fully-connected layer.

According to yet further examples, the one or more
sliding filters may be activated by semantic content. The
feature maps may be generated once from the entire input
image at one or more scales. The image processing appli-
cation may be further configured to resize the image; gen-
erate the feature maps for each scale; and combine features
for each scale by pooling the features channel-by-channel.
The SPP layer may include a 4-level spatial pyramid of 1x1,
2x2, 3x3, and 6x6 configuration that yields a total of 50
spatial bins. The image processing application may also be
configured to fine-tune the fully-connected layer by initial-
izing weights of the fully-connected layer, performing a first
training using a first learning rate and performing a second
training using a refined second learning rate. The image
processing application may be further configured to post-
process prediction windows using bounding-box regression,
where features used for regression are pooled features from
the convolution layer.

According to some examples, a computer-readable
memory device with instructions stored thereon to perform
object detection in an image is described. The instructions
may include receiving an input image; generating feature
maps by one or more filters on a convolutional layer of a first
neural network processing the input image; extracting win-
dow-wise features from regions of deep convolutional fea-
ture maps; performing a selective search to generate a
predefined number of candidate windows per image; spa-
tially pooling responses of candidate windows at a spatial
pyramid pooling (SPP) layer; providing outputs of the SPP
layer to a fully-connected layer as fixed dimensional vectors;
and training a classifier to detect one or more objects in the
input image based on the fixed dimensional vectors received
at the fully-connected layer.

According to other examples, the instructions may further
include resizing the input image such that min (w; h)=s,
where w is a width of the image, h is a height of the image,
and s represents a predefined scale for the image. The
instructions may also include pre-training the first neural
network and a second neural network with different random
initializations; scoring candidate windows on a test image
through the first neural network and the second neural
network; performing non-maximum suppression on a union
of two sets of candidate windows with their respective
scores; and selecting a window with higher score from the
first neural network or the second neural network for the
detection of the object.

The above specification, examples and data provide a
complete description of the manufacture and use of the
composition of the embodiments. Although the subject
matter has been described in language specific to structural
features and/or methodological acts, it is to be understood
that the subject matter defined in the appended claims is not
necessarily limited to the specific features or acts described
above. Rather, the specific features and acts described above
are disclosed as example forms of implementing the claims
and embodiments.

What is claimed is:
1. A method to perform object detection in an image, the
method comprising:
receiving an input image;
generating feature maps by one or more filters on a
convolutional layer of a neural network processing the
input image;
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spatially pooling responses of each filter at a spatial

pyramid pooling (SPP) layer;

providing outputs of the SPP layer to a fully-connected

layer as fixed dimensional vectors; and

training a classifier to detect one or more objects in the

input image based on the fixed dimensional vectors
received at the fully-connected layer.

2. The method of claim 1, wherein generating the feature
maps comprises:

employing sliding filters at one or more convolutional

layers configured to accept inputs of arbitrary sizes and
provide outputs that approximate an aspect ratio of the
inputs.

3. The method of claim 1, wherein spatially pooling the
responses of each filter comprises:

pooling the responses of each filter in a plurality of spatial

bins; and
generating a multi-dimensional output vector, wherein a
number of dimensions of the output vector is based on
a number of the plurality of spatial bins multiplied by
a number of filters in a last convolutional layer.

4. The method of claim 1, further comprising:

applying the SPP on each candidate window of the feature
maps to pool a fixed-length representation of each
candidate window.

5. The method of claim 1, further comprising:

resizing the image following feature extraction.

6. The method of claim 1, wherein the outputs of the SPP
layer are representations of each window such that the
classifier is trained for each category of the representations.

7. The method of claim 1, wherein training the classifier
comprises:

employing ground-truth windows to generate positive

samples; and

identifying negative samples based on an overlap with a

positive window below a first predefined threshold.

8. The method of claim 7, further comprising:

removing a negative sample that overlaps with another

negative sample above a second predefined threshold.

9. The method of claim 1, further comprising:

in a test mode, scoring candidate windows through the

classifier.

10. The method of claim 9, further comprising:

employing non-maximum suppression with a predefined

threshold on the scored candidate windows.

11. A computing device to perform object detection in an
image, the computing device comprising:

an input module configured to receive an input image

through one or more of a wired or wireless communi-
cation;

a memory configured to store instructions; and

a processor coupled to the memory and the input module,

the processor executing an image processing applica-
tion, wherein the image processing application is con-
figured to:

generate feature maps by employing one or more sliding

filters on a convolutional layer of a neural network
processing the input image;

spatially pool responses of each filter in a plurality of

spatial bins at a spatial pyramid pooling (SPP) layer;
provide outputs of the SPP layer to a fully-connected layer
as fixed dimensional vectors; and
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train a classifier to detect one or more objects in the input
image based on the fixed dimensional vectors received
at the fully-connected layer.

12. The computing device of claim 11, wherein the one or
more sliding filters are activated by semantic content.

13. The computing device of claim 11, wherein the feature
maps are generated once from the entire input image at one
or more scales.

14. The computing device of claim 11, wherein the image
processing application is further configured to:

resize the image;

generate the feature maps for each scale; and

combine features for each scale by pooling the features

channel-by-channel.

15. The computing device of claim 11, wherein the SPP
layer comprises a 4-level spatial pyramid of 1x1, 2x2, 3x3,
and 6x6 configuration that yields a total of 50 spatial bins.

16. The computing device of claim 11, wherein the image
processing application is further configured to:

fine-tune the fully-connected layer by initializing weights

of the fully-connected layer, performing a first training
using a first learning rate and performing a second
training using a refined second learning rate.

17. The computing device of claim 11, wherein the image
processing application is further configured to:

post-process prediction windows using bounding-box

regression, wherein features used for regression are
pooled features from the convolution layer.

18. A computer-readable memory device with instructions
stored thereon to perform object detection in an image, the
instructions comprising:

receiving an input image;

generating feature maps by one or more filters on a

convolutional layer of a first neural network processing
the input image;

extracting window-wise features from regions of deep

convolutional feature maps;

performing a selective search to generate a predefined

number of candidate windows per image;

spatially pooling responses of candidate windows at a

spatial pyramid pooling (SPP) layer;

providing outputs of the SPP layer to a fully-connected

layer as fixed dimensional vectors; and

training a classifier to detect one or more objects in the

input image based on the fixed dimensional vectors
received at the fully-connected layer.

19. The computer-readable memory device of claim 18,
wherein the instructions further comprise:

resizing the input image such that min (w; h)=s, where w

is a width of the image, h is a height of the image, and
s represents a predefined scale for the image.

20. The computer-readable memory device of claim 19,
wherein the instructions further comprise:

pre-training the first neural network and a second neural

network with different random initializations;
scoring candidate windows on a test image through the
first neural network and the second neural network; and

performing non-maximum suppression on a union of two
sets of candidate windows with their respective scores;
and

selecting a window with higher score from the first neural

network or the second neural network for the detection
of the object.



